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Thermoelastic effects at low temperatures and quantum limits in displacement measurements
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The displacement fluctuations of mirrors in optomechanical devices, induced via thermal expansion by
temperature fluctuations due either to thermodynamic fluctuations or to fluctuations in the photon absorption,
can be made smaller than quantum fluctuations, at the low temperatures, high reflectivities, and high light
powers needed to readout displacements at the standard quantum limit. The result is relevant for the design of
quantum-limited gravitational-wave detectors, both ‘‘interferometers’’ and ‘‘bars,’’ and for experiments to
study directly mechanical motion in the quantum regime.
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I. INTRODUCTION

In a recent paper Braginsky, Gorodetsky, and Vyatcha
@1# ~BGV! considered the noise in interferometr
gravitational-wave detectors due to thermoelastic fluct
tions of the mirrors attached to the test masses of the in
ferometer. These thermoelastic fluctuations have contr
tions from two independent processes, both acting via
thermal expansivity of the mirror substrate material. The fi
one is thethermodynamicfluctuations in temperature of th
body of the mirror substrate~these, in the approximation o
small thermal expansion, are independent from the ther
dynamic fluctuations in volume, which are responsible
the well studiedthermalor Browniannoise@2#!. The second
one is thephotothermaltemperature fluctuations due to th
fact that the number of photons absorbed by the mirror fl
tuates.

BGV results for the thermodynamic noise, obtained
half-infinite mirrors, have been extended to the case of fin
size mirrors@3#, with particular reference to the design
advanced interferometric gravitational-wave detectors, s
as the Laser Interferometric Gravitational Wave Observat
~LIGOII ! @4#. In both cases the calculations are concern
with mirrors at room temperature, made of materials used
mirror substrates as fused silica and sapphire, with km-l
Fabry-Perot cavities, which are characterized by laser b
spots of sizer 0.1 cm and comparatively low finesseF
.100, and with characteristic frequenciesf .100 Hz, for the
mechanical motion to be monitored optically.

There are a number of situations, at variance with
above, which are of interest for optomechanical devices
such situations one or both of the thermoelastic fluctuati
effects may be of concern, when one would like to reach
the measurements of small displacement, the so-calledstan-
dard quantum limit~SQL! @5,6#. Already for LIGOII, BGV
seem to discourage, in favor of fused silica, the use of s
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phire, which on the other hand may be the material cons
ered forcold mirrors in connection with advanced configu
rations of interferometric gravitational-wave detectors, un
study as LCGT@7#, LIGOIII @4#, and EURO@8#.

The BGV effects would be of concern for very sensiti
displacement sensors based on high-finesse Fabry-P
cavities, to be used in connection with bar detectors of gra
tational waves as dual cavity transducers@9# or to study the
quantum effects of radiation pressure@10–12#. In both cases
the cavities are much shorter~less than a few centimeters!
than in a gravitational-wave interferometer, the beam sp
smaller (r 0.1022 cm!, finesses much larger (F*105), and
temperatures as low asT&1 K. It may appear from BGV
results that the thermoelastic effects would generate part
larly large effects, inasmuch the volume involved in the flu
tuation processes would be correspondingly smaller.

For these reasons, it is of interest to explore what wo
be the behavior of both thermoelastic effects in the low te
peratures and small beam spot regimes, where some B
assumptions break down. In particular, the heat diffus
length l t depends on the temperature and can become la
than the laser beam spot dimensionr 0, so that the adiabatic
approximation is no longer valid.

In Sec. II we give the essentials of the regime of phono
and heat propagation, which is established at low eno
temperatures, and we evaluate the thermoelastic noises
a simple calculation, in relation to the beam spot size and
the frequencies at which the optomechanical device is m
sensitive.

In Secs. III and IV we give an exact calculation of bo
thermoelastic effects in the whole region of interest—that
for any value of the ratiol t /r 0. The results, under the as
sumptions of the low-temperature regime of Sec. II, wou
directly apply to actual mirrors for the quoted optomecha
cal devices. We also relate in a general way the photother
noise to the displacement noise induced on the mirror by
quantum fluctuations of radiation pressure in the cavity.

In Sec. V we discuss the limitations and relevance of o
approach in the design of SQL optomechanical displacem
devices.
©2001 The American Physical Society03-1
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II. HEAT PROPAGATION AT LOW TEMPERATURES

Let us assume the optomechanical device to work in so
frequency range centered around a frequencyf and let us
discuss the photothermal effect. We reexamine the calc
tion of BGV in the following way, so as to use it to see th
regime which sets up at low temperatures.

The multilayer coating of the mirror absorbs a small fra
tion of the light power and this induces an inhomogene
increase of the temperature of the bulk. The absorbed po
is a Poisson-distributed random variable~the statistics of the
absorbed photon will be discussed in more detail in Sec.!,
and these fluctuations lead to thermal fluctuations in the b
of the mirror. They are consequently responsible for fluct
tions of the position of the reflecting face of the mirror, v
the thermal expansion of the mirror material.

The rms displacement noise of the mirror end face,Dz
5zaDT, is found by evaluating the rms fluctuation in tem
peratureDT, in a volumeV of the mirror of thicknessz,
linear thermal expansion coefficienta(T), and specific ther-
mal capacityC(T), as the absorbed photon fluxn fluctuates,

Dz5za
\v0Dn

rCV
, ~1!

where\v0 is the energy per photon,Dn5An̄/ f is the rms
Poissonian fluctuation of the number of photons absor
over the time 1/f (n̄ is the average absorbed photon flux!,
and r is the density of the mirror material (z axis is taken
normal to the plane face of the mirror!.

At room temperature and for large beam spots, BGV c
ditions apply: the phonon mean free path and relaxa
times are very small, respectively, in comparison to the m
ror coating thickness~where the photons create the phono
in the absorption process! and in comparison with the char
acteristic time 1/f . The thermal diffusion length at frequenc
f is given by

l t5A k

rC f
, ~2!

where k is the thermal conductivity. For a frequencyf
around 100 Hz,l t is on the one hand larger than the coati
thicknesszc and on the other hand much smaller than
beam spot radiusr 0:

zc, l t,r 0 . ~3!

This is the basic BGV approximation, which states that
volume involved in the fluctuating thermal expansion effe
is the fraction of the mirror substrateV. l tr 0

2 and thus one
hasz. l t in Eq. ~1!.

This argument reproduces the essential features of
BGV spectral densitySz@ f # of photothermal displacemen
noise, as one may write, around the frequencyf,

Sz@ f #.
Dz2

f
.S a

rCr0
2D 2

Sabs

f 2
, ~4!
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whereSabs5\v0Wabs is the spectral power noise of the a
sorbed light, withWabs5\v0n̄ the average absorbed ligh
power. In fact we see that Eq.~4! is the same final BGV
relation ~Eq. ~8! of @1#!, apart from a term with the Poisso
ratio of the mirror material and numerical factors.

The condition~3! may break down for small beam spo
radiusr 0 or for low temperatureT, as the thermal diffusion
length gets longer, either in the mirror substrate or in
mirror coating or in both.

For mirrors substrates of crystalline materials, such
specifically sapphire, for a frequencyf .1 kHz, the thermal
length l ts in the substrate at low temperature becomes of
order of 10 cm, to be compared with a room temperat
value l ts(300 K).1022 cm ~see Table I!. Then at low tem-
perature we rather have

l ts*r 0 , ~5!

at all frequencies below some 1 kHz, both for mirrors
gravitational-wave interferometers~for which r 0.1.5 cm!
and for optomechanical sensors~for which r 0<331022

cm!. This value forl ts stays constant in the whole regionT
<10 K, as crystalline materials follow DebyeT3 laws for
a(T), C(T), andk(T), and thus their ratios are all indepen
dent ofT.

High-reflection coatings are typically 40 layers one qu
ter wavelength thick of alternating amorphous materials s
as TiO2 and SiO2, with a total thicknesszc.1023 cm for
Nd-Yag laser light. For such a coating, the breakdown te
perature for Eq.~3! is different for mirrors of large-scale
interferometers and for mirrors of high-finesse cavities,

TABLE I. Thermal properties of fused silica~top! and sapphire
~bottom! at different temperatures. The thermal expansion coe
cient a, thermal conductivityk, thermal capacityC, and phonon
mean free pathl are derived from@1# at room temperature and
from @13–15# at low temperatures. The thermal lengthl t at 1 kHz is
obtained from Eq.~2!.

~a!

Fused silica 300 K 10 K 1 K

a (K21) 5.531027 22.631027 22.6310210

k ~W/m K! 1.4 0.1 231022

C ~J/Kg K! 6.73102 3 331023

l ~m! 8310210 831028 931026

a/k ~m/W! 3.931027 2.631026 1.331028

l t ~m! 331025 1.231024 1.731023

~b!

Sapphire 300 K 10 K 1 K

a (K21) 531026 5.8310210 5.8310213

k ~W/m K! 40 4.33103 4.3
C ~J/Kg K! 7.93102 8.931022 8.931025

l ~m! 531029 2.231023

a/k ~m/W! 1.231027 1.4310213

l t (m) 1.131024 0.11
3-2
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cause of the difference inr 0. For LIGOII mirrors, for in-
stance, taking SiO2 as the reference material for the coatin
the thermal lengthl tc in the coating is of the order ofr 0 only
at very low temperature,T,1 K. Amorphous silica films
would have l tc.1022 cm for T,10 K, so that for high-
finesse cavities we havel tc*r 0 in the whole low-
temperature region.

Despite this difference, there are two features of releva
which affect similarly the thermal behavior of the coatin
substrate composite in both types of mirrors. In both ca
we have that, at all low temperatures, the thermal lengthl tc
stays longer than the coating thickness,l tc.zc , and that the
mean free pathls of the phonons in the substrate is itse
long, at least a fraction of a centimeter@13#. In a coating of a
SiO2 film even the phonon mean free pathlc will be larger
than 1023 cm, and thuslc.zc , for T&1 K @16#.

Let us then consider how the thermal regime change
sufficiently low temperatures (T<10 K!. The heat delivered
by the absorbed photons in the volumer 0

2zc of the coating
crosses to the substrate in a time smaller than 1/f , as l tc
.zc . From the substrate, asls*r 0, the thermal phonons
thereby created will reenter the coating, heating it up in e
shorter time over distancesls . This happens because th
acoustic mismatch between coating and substrate is s
@17#, when densities and sound velocities are quite close.
substrate thus acts as a thermal short for the coating in
plane of the mirror end face: the coating and the subst
will be practically isothermal over distances of the order
the phonon mean free pathls in the substrate. Then th
coating will contribute to the thermoelastic fluctuations w
its thermal expansion coefficientac , but following the ther-
mal fluctuations of spectral densityST of the substrate. On
the other hand, at frequencyf, the volume of substrate in
volved in the fluctuating heating will be of the order ofV
. l ts

3 , where the thermal length is that in the substrate.
including both the coating and the substrate, we write n
for the displacement spectral densitySz@ f #,

Sz@ f #.@~aczc!
21~asl ts!

2#ST@ f #. ~6!

According to Table I,aczc is at least one order of magnitud
smaller thanasl ts at low temperature (zc.1025 m and l ts
.0.1 m!. We can then neglect the expansion of the coat
over its thicknesszc and we find that the effect is dominate
by the substrate properties:

Sz@ f #.S as

rsCsl ts
2 D 2

Sabs

f 2
. ~7!

This is the relevant result of our discussion of thermal
havior of the coating-substrate composite at low temperat
in that now the temperature fluctuations involve compa
tively large substrate volumes, instead of the comparativ
small coating volume, where the actual absorption of p
tons occurs. Notice that, were this not the case, one wo
have of course very large effects just concentrated in
volume, the external surface of which is that where displa
ments are going to be measured at SQL sensitivities.
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When we substitute in Eq.~7! the expression~2! for the
thermal length, we see a dramatic change of regime,

Sz@ f #.S as

ks
D 2

Sabs, ~8!

where now the~substrate! thermal conductivityks appears,
instead of the thermal capacity, and the frequency dep
dence has disappeared. In fact the system behaves as i
low-frequency region of a low-pass filter, while, under BG
conditions, it was rather in the high frequency region.

We develop in the following sections a rigorous calcu
tion of the effects in the low-temperature regime, whi
gives in clear details the features grossly anticipated ab
and which can be directly applied to mirrors of interest f
optomechanical devices, when the above thermal behavio
the coating-substrate system is realized.

III. THERMODYNAMIC NOISE

In this section we determine the thermodynamic no
without any assumption on the ratiol t /r 0 between the ther-
mal diffusion length in the substrate and the beam spot s
Our analysis is an extension of the procedure developed
Liu and Thorne@3#, but it is valid even when the adiabati
approximation is not satisfied. According to Eq.~2!, the con-
dition l t,r 0 can actually be written as a condition over th
frequency,f .k/rCr0

2. Our treatment is thus also valid fo
an angular frequencyv52p f smaller than the adiabati
limit vc defined as

vc5
k

rCr0
2

. ~9!

As shown in the previous section we neglect any effe
of the coating, taking only into account the thermal prop
ties of the substrate of the mirror. We also neglect any fin
size effects since we have shown that the volume of subs
involved in the fluctuating heating is usually smaller than t
size of the mirror, even at low temperature. We thus appro
mate the mirror as a half space, the coated plane face co
sponding to the planez50 in cylindrical coordinates.

The analysis is based on a general formulation of
fluctuation-dissipation theorem, used by Levin@18# to com-
pute the usual thermal noise~Brownian motion! of the mir-
rors in a gravitational-wave interferometer. We know that
an interferometer or in a high-finesse Fabry-Perot cavity,
light is sensitive to the normal displacementuz (z50,r ,t) of
the coated plane face of the mirror, spatially averaged o
the beam profile. This averaged displacementû is defined as

û~ t !5E d2r uz~z50,r ,t !
e2r 2/r 0

2

pr 0
2

. ~10!

To compute the spectral densitySû@v# of the displacementû
at a given angular frequencyv, we determine the mechanica
response of the mirror to a sinusoidally oscillating pressu
More precisely, we examine the effect of a pressureP(r ,t)
3-3
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applied at every pointr of the coated face of the mirror with
the same spatial profile as the optical beam,

P~r ,t !5
F0

pr 0
2

e2r 2/r 0
2
cos~vt !, ~11!

whereF0 is a constant force amplitude. We can compute
energy Wdiss dissipated by the mirror in response to th
force, averaged over a period 2p/v of the pressure oscilla
tions. The fluctuation-dissipation theorem then states that
spectral density of the displacement noise is given by

Sû@v#5
8kBT

v2

Wdiss

F0
2

, ~12!

wherekB is Boltzmann’s constant. This approach has be
used by Levin to compute the Brownian noise@18#. We are
interested here in the thermodynamic noise so thatWdiss
corresponds to the energy dissipated by thermoelastic
flow.

The rate of thermoelastic dissipation is given by the f
lowing expression†first term of Eq.~35.1! of Ref. @19#‡:

Wdiss5 K T
dS

dt L 5 K E d3r
k

T
~“dT!2L , ~13!

where the integral is on the entire volume of the mirror a
the bracketŝ •••& stand for an average over the oscillatio
period 2p/v. Here dT is the temperature perturbatio
around the unperturbed valueT, induced by the oscillating
pressure.Wdiss is then related to the time derivativedS/dt of
the mirror’s entropy, which depends on the temperature g
dient“dT.

To calculate the rate of energy dissipation,Wdiss, it is
necessary to solve a system of two coupled equations,
first one for the displacementu(r ,t) at every pointr inside
the substrate and the second one for the temperature pe
bation dT(r ,t). As the time required for sound to trave
across the mirror is usually smaller than the oscillation
riod 2p/v, we can use a quasistatic approximation and
duce the displacementu from the equation of static stres
balance@19#,

“~“.u!1~122s!¹2u522a~11s!“dT, ~14!

wheres is the Poisson ratio of the substrate (a is the linear
thermal expansion coefficient!. The temperature perturbatio
dT evolves according to the thermal conductivity equat
@19#

]~dT!

]t
2a2D~dT!5

2aET

rC~122s!

]~“.u!

]t
, ~15!

wherea25k/rC and E is the Young modulus of the sub
strate (r is the density, andC is the specific thermal capac
ity!.

The solutions of Eqs.~14! and ~15! must also satisfy
boundary conditions. If we approximate the mirror as a h
space, the temperature perturbationdT and the stress tenso
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s i j must satisfy the following boundary conditions on th
coated plane face of the mirror:

szz~z50,r ,t !5P~r ,t !, ~16a!

szx~z50,r ,t !5szy~z50,r ,t !50, ~16b!

]~dT!

]z
~z50,r ,t !50. ~16c!

The stress tensors i j is defined in presence of changes
temperature as†see Eq.~6.2! of @19#‡

s i j 52
E

~122s!
adTd i j

1
E

~11s! Fui j 1
s

~122s!
d i j (

k
ukkG , ~17!

where the strain tensorui j is equal to1
2 (]ui /]xj1]uj /]xi).

We solve perturbatively this system of equations at
first order ina. We first solve the static stress-balance eq
tion at the zeroth order ina, neglecting the temperature term
in the right part of Eq.~14! and in the expression~17! of the
stress tensor. The solutionu(0) of this equation is well known
~paragraph 8 of@19#!. We then solve the thermal conductiv
ity equation~15! using as a source term the solutionu(0) and
we obtain the temperature perturbationdT(1) in the first or-
der in a. The calculation ofu(0), dT(1) and finallyWdiss is
done in the Appendix. Using the results of this appendix,
show thatSû@v# is equal to

Sû@v#532a2~11s!2
kBT2

rC
I , ~18!

where the integralI is given by

I 5
a2

~2p!3E dkx dky dkz

k'
2 e2k'

2 r 0
2/2

k2~a4k41v2!
, ~19!

with k'
2 5kx

21ky
2 andk25k'

2 1kz
2 .

We can expressSû@v# as a function of an integralJ@V#
which depends only on a dimensionless variableV equal to
v/vc , wherevc5a2/r 0

2 corresponds to the adiabatic lim
@see Eq. 9#. We get

Sû@v#5
8

A2p
a2~11s!2

kBT2r 0

rCa2
J@V#, ~20!

whereJ@V# is derived from the integralI by the transforma-
tion of variablesu[k'r 0 andv[kzr 0:

J@V#5A2

pE0

`

duE
2`

`

dv
u3e2u2/2

~u21v2!@~u21v2!21V2#
.

~21!

When v@vc ~i.e., V@1), we can neglectu21v2 with
respect toV in the denominator of the integral.J@V# can
then be calculated analytically and we obtain
3-4
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J@V@1#51/V2. ~22!

Using this result and the definition ofV, we finally show that
Sû@v# is equal to

Sû@v@vc#5
8

A2p
a2~11s!2

kBT2

rC

a2

v2r 0
3

. ~23!

This formula is identical to the expression~18! of Ref. @3#
and to the expression~12! of BGV @1#.

For small values ofV, the integralJ@V# can be computed
numerically. The result is shown in Fig. 1 where we ha
plottedJ@V# as a function ofV in logarithmic scale, forV
between 1025 and 105. This figure shows thatV51 is a
cutoff frequency. ForV.1 the curve has a slope equal
22, whereas forV,1 the curve has a smaller slope of th
order of 21/2. In this low-frequency range, the noise
smaller than the one which would be obtained using the a
batic approximation~dashed curve in Fig. 1!.

IV. PHOTOTHERMAL NOISE

We now briefly examine the case of the phototherm
noise which exhibits somewhat a similar frequency behav
as the thermodynamic noise. We use the same metho
BGV @1# to calculate the spectral densitySû@v# due to this
noise but we do not make any adiabatic approximation
that the calculation is valid also for frequencies smaller th
the adiabatic limitvc . We then obtain

Sû@v#5
2

p2
a2~11s!2

\v0Wabs

~rCa2!2
K@V#, ~24!

where the integralK@V# is equal to

K@V#5U 1

pE0

`

duE
2`

`

dv
u2e2u2/2

~u21v2!~u21v21 iV!
U2

.

~25!

When v@vc the adiabatic approximation is valid and th
result of BGV should be recovered. Indeed, whenV@1,we
can neglectu21v2 with respect toV and calculate analyti-

FIG. 1. Frequency dependence of the thermodynamic noise.
frequencyv is normalized to the adiabatic limitvc . The dashed
curve corresponds to the adiabatic approximation.
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cally K@V# which turns out to be equal to 1/V2. Using the
definition of V, we finally show thatSû@v# is equal to

Sû@v@vc#5
2

p2
a2~11s!2

\v0Wabs

~rCr0
2v!2

. ~26!

This formula is identical to Eq.~8! of BGV @1#.
For low values ofV, K@V# can be calculated numeri

cally. The result is shown in Fig. 2. As in the case of t
thermodynamic effect~Fig. 1!, V51 is a cutoff frequency:
for V.1 the function has a slope equal to22, whereas for
V,1 the function has a much smaller slope and is alm
constant.

This result is in perfect agreement with the simple de
vation made in Sec. II. The spectral density~24! can actually
be written as

Sû@v#5
2

p2
~11s!2S a

k D 2

SabsK@V#, ~27!

which is similar to Eq.~8! at low frequency whereK@V#
.1, apart from a term with the Poisson ratio. The frequen
dependence of the photothermal noise then corresponds
low-pass filter, with a cutoff frequency equal to the adiaba
limit vc . At low frequency—that is, when the thermal di
fusion lengthl t in the substrate becomes larger than the be
spot radiusr 0—one has a dramatic change of regime and
photothermal noise is much smaller than the one wh
would be obtained within the adiabatic approximati
~dashed curve in Fig. 2!.

Another important point for the realization of opto
mechanical sensors working at the quantum level is to co
pare the photothermal noise to the displacements induce
the quantum fluctuations of radiation pressure of light. Qu
tum effects can be made larger than the usual thermal n
by decreasing the temperature and by increasing the l
power. This would not be convenient for photothermal no
since the effect is proportional to the light power. BGV r
sults show that for sapphire at room temperature the ph
thermal noise is of the same order as the standard quan
limit in an interferometer. In a high-finesse cavity, hopeful
these two effects are related to quite different photon sta

he FIG. 2. Frequency dependence of the photothermal noise.
frequencyv is normalized to the adiabatic limitvc . The dashed
curve corresponds to the adiabatic approximation.
3-5
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tics. As a matter of fact, the displacementû induced by the
radiation pressure of the intracavity field is related to
intracavity photon fluxN,

û@v#5xe f f@v#Prad@v#52\kxe f f@v#N@v#, ~28!

where 2\k is the momentum exchange during a photon
flection (k is the wave vector of light!, andxe f f is an effec-
tive susceptibility describing the mechanical response of
mirror to the radiation pressurePrad @12#. The noise spec-
trum Sû@v# induced by radiation pressure is thus prop
tional to the spectral power noiseScav of the intracavity
light, which for a resonant cavity is@12#

Scav@v#5
2F/p

11~v/vcav!2
\v0Wcav , ~29!

wherevcav is the cavity bandwidth,F is the cavity finesse
andWcav5\v0N̄ is the average intracavity light power. A
low frequency (v&vcav) the intracavity photon flux corre
sponds to a super-Poissonian statistics, the noise power b
larger than the Poissonian spectral density by a facto
2F/p @20#.

On the other hand, the absorbed photons always co
spond to a Poissonian statistics, even if it is not the case
the intracavity photons. The spectral power noiseSabs of the
absorbed light is given by

Sabs5\v0Wabs5A\v0Wcav , ~30!

whereA is the absorption coefficient of the mirror~the aver-
age flux of absorbed photons isn̄5AN̄). This effect cannot
be understood within the framework of a corpuscular mo
in which the photon absorption is described as a Poisso
process: as a result of the super-Poissonian statistics o
intracavity photons, one would find a super-Poissonian
tistics for the absorbed photons. One has to take into acc
the interferences between the intracavity field and
vacuum fluctuations associated with the mirror losses. T
can be done by using a simple model where the absorptio
described as a small transmission of the mirror and where
absorbed photons are identified to the photons transmitte
the mirror. One thus has a high-finesse cavity with two inp
output ports and it is well known that the photon statistics
the light either reflected or transmitted by such a cavity
always Poissonian, for coherent or vacuum incoming bea
@21#.

Equations~29! and ~30! clearly show that both the radia
tion pressure effect and the photothermal noise are pro
tional to the intracavity light powerWcav ; however, the dis-
placements induced by radiation pressure have an e
dependence on the cavity finesseF. The photothermal noise
can thus become negligible as compared to quantum eff
for a high-finesse cavity.

To perform a quantitative comparison between the t
effects, we calculate the susceptibilityxe f f defined by Eq.
~28!. We determine here the mechanical response assoc
with the internal degrees of freedom of the mirror, which a
of interest for displacement sensors. We thus ignore the
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diation pressure effects associated with the global motion
suspended mirrors, which are the dominant contribution
SQL at low frequency in gravitational-wave interferomete
We calculate the average displacementû induced by the ra-
diation pressurePrad , assuming the mirror is a half spac
(z>0). The normal displacementuz(z50,r ,t) of the coated
face of the mirror can be deduced from the results of pa
graph 8 of@19#:

uz~z50,r ,t !5
2\kN~ t !

Ep2r 0
2 ~12s2!E d2r 8

e2r 82/r 0
2

ur2r 8u
.

~31!

Using the definition~10! of û, we obtain

û~ t !5
2\kN~ t !

Ep3r 0
4 ~12s2!E d2r d2r 8

e2(r 21r 82)/r 0
2

ur2r 8u
. ~32!

The integral can easily be calculated by using a new se
variablesu5r2r 8 andv5r1r 8. We finally get

xe f f@v#5
12s2

A2pEr0

, ~33!

and the noise spectrumSû@v# induced by radiation pressur
fluctuations is equal to

Sû@v#5S 2~12s2!

A2pEcr0
D 2

Scav@v#, ~34!

wherec is the speed of light.
For all the displacement sensors considered in this pa

the characteristic angular frequencyv is smaller than the
cavity bandwidthvcav . The noise spectrumSû@v# is conse-
quently independent ofv and equal to

Sû@v!vcav#5S 2~12s2!

A2pEcr0
D 2

2F
p

\v0Wcav . ~35!

This expression shows that the radiation pressure effect
pends on the mechanical characteristics of the substrateE
and s) whereas the photothermal noise@Eq. ~27!# depends
on the thermodynamic characteristics of the substrate via
ratio a/k. At low temperature,K@V# is of the order of 1 and
the ratioa/k is constant and equal to 1.4310213 m/W for
sapphire~see Table I!. E is equal to 431011 J/m3 ands is
equal to 0.25 so that the ratio between the photothermal
radiation pressure noises is of the order of

Sû
pt/Sû

rad.2.531014
Ar0

2

F . ~36!

For a 1 ppm absorption rate (A51026), a beam spot sizer 0
of 1024 m, and a cavity finesseF of 105, the photothermal
noise is more than four orders of magnitude smaller than
radiation pressure effects of internal degrees of freedom
3-6
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the mirror. The photothermal noise is thus negligible as co
pared to quantum effects in optomechanical sensors.

Note that this is not the case in gravitational-wave int
ferometers wherer 0.1022 m andF.100. The photother-
mal noise is then two orders of magnitude larger than
quantum noise of internal motion. However, the interfero
eter is not expected to be sensitive to this quantum n
since for suspended mirrors it is overwhelmed by the qu
tum noise associated with external pendulum motion.

V. DISCUSSION AND CONCLUSION

We have shown that both thermoelastic and photother
noises have a frequency dependence which looks like a
pass filter: below a cutoff frequencyvc , these noises are
much smaller than the noise which would be obtained
cording to the 1/v2 dependence at high frequency.

The first lines in Table II give the values of the cuto
frequencyvc/2p for fused silica and sapphire, and for
beam spot sizer 0 of 1 cm ~Table IIa! and 1022 cm ~Table
IIb!. The results show thatvc is increased when the temper
ture decreases~three orders of magnitude for fused silica a
six orders of magnitude for sapphire when the temperatur
reduced from 300 to 1 K!. If we consider a typical frequenc
v/2p of 100 Hz, the adiabatic approximation is never va
for sapphire at low temperature, whereas it is valid for fus
silica only for large beam spot size.

We first focus on the thermodynamic noise whose val
calculated from Eq.~20! are shown in the third lines o
Tables IIa and IIb. The noise is smaller than the one wh
would be obtained within the adiabatic approximation~last
lines in Tables IIa and IIb!. The reduction factor, equal t

TABLE II. Results for fused silica and sapphire at differe
temperatures, for a frequencyv/2p5100 Hz and for a beam spo
size r 051 cm ~top! and 1022 cm ~bottom!. The thermodynamic
noiseSû ~third lines! is reduced as compared to its value obtain
within the adiabatic approximation~fourth lines! by a factor
V2J@V# ~second lines!.

~a!

r 051022 m Fused silica Sapphire
300 K 1 K 300 K 1 K

~a!

vc/2p ~Hz! 1.531023 4.8 231022 1.93104

V2J@V# 1 0.74 0.98 1.331024

Sû (m2/Hz) 2.7310242 3.4310245 1.5310239 2.6310249

Sû ~adiabatic! 2.7310242 4.6310245 1.5310239 2310245

~b!

r 051024 m Fused silica Sapphire
300 K 1 K 300 K 1 K

~b!

vc/2p ~Hz! 15 4.83104 23102 1.93108

V2J@V# 0.51 3.531025 6.431022 1.4310210

Sû (m2/Hz) 1.4310236 1.6310243 1310234 2.8310249

Sû ~adiabatic! 2.7310236 4.6310239 1.6310233 2310239
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1/V2J@V#, can be as large as 104 for sapphire at low tem-
perature withr 051 cm and as large as 1010 for r 051022 cm
~second lines in Tables IIa and IIb!.

We immediately see the impact for gravitational-wave
terferometers (r 051 cm!: for sapphire at low temperature
the thermodynamic noise is more than four orders of mag
tude smaller than for fused silica, so that the choice of
material at low temperature would be just the opposite th
as in BGV, at room temperature. Furthermore, the therm
dynamic noise at 100 Hz would be equal to 2.6310249

m2/Hz for sapphire at low temperature, well below the no
at room temperature (2.7310242 m2/Hz for fused silica!. It
is also well below the SQL limit due to the external pend
lum motion, equal to 3.6310241 m2/Hz for a mirror mass of
30 kg @1#.

Similarly for optomechanical systems with smaller bea
spot size (r 0&1022 cm!, the thermodynamic noise can b
made as small as 2.8310249 m2/Hz by using sapphire at low
temperature, to be compared to a noise larger than 10236

m2/Hz at room temperature both for sapphire and fus
silica. It is worth noticing that this very low value is partl
due to the reduction factor associated with the nonadiaba
ity which is of the order of 1010. This noise can be compare
to the SQL limit due to the internal motion of the mirro
which is equal to\uxe f fu.10242 m2/Hz @22#. At low tem-
perature, the thermodynamic noise is thus smaller than
SQL limit so that optomechanical sensors as in Refs.@9,10#
would be able to get to the SQL limit.

Let us note that the thermodynamic noise for sapphire
K is mostly independent of the beam spot sizer 0: similar
values are obtained for large spot sizes (2.6310249 m2/Hz
for r 051 cm! and small ones (2.8310249 m2/Hz for r 0
51022 cm!. This result is due to the fact that, in contra
with fused silica, the adiabatic approximation is not valid f
sapphire whatever the beam spot size is, as long as
smaller than a few centimeters. The non-adiabatic condi
v,vc can actually be written asr 0,Ak/rCv @see Eq.~9!#.
In this non-adiabatic regime, we have shown thatJ@V#
evolves as 1/AV which is proportional toAvc and then to
1/r 0. The thermodynamic noise is proportional tor 0J@V#
@Eq. ~20!# and is then independent ofr 0.

Similar results can be obtained for the phototherm
noise. We have shown that as long as the adiabatic cond
is not satisfied, the noise mostly depends on the ratioa/k
@Eqs. ~8! or ~27!#. In particular it does not depend on th
frequencyv or on the beam spot sizer 0. For sapphire at low
temperature and for an average absorbed powerWabs.1 W
of Nd-Yag laser light, the photothermal noise is then of t
order of 10245 m2/Hz both for interferometers and optom
echanical sensors, well below the SQL limits of both t
external and internal motions.

Let us finally note that the results obtained above apply
detail to an actual mirror system when the conditions
scribed in Sec. II are satisfied. In particular the interplay
the various characteristic lengths~phonon mean free path
and thermal lengths at the frequencies of interest, both in
substrate and in the coating, beam spot, coating thickn
and mirror size! must in the end allow, in some temperatu
range, that the thermal properties of the substrate domin

This may be not easy to achieve and thus our anal
may correspond to a somewhat idealized situation. At
3-7
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lowest temperaturesT<0.5 K, the phonon mean free path
the coating gets of the order of its thickness~as for an amor-
phous silica coating, see, for example,@16#!, while the time
constants for phonon local equilibrium continue to st
smaller than 2p/v both for the coating and the substrate.
first sight, it may appear that the equalization of coating v
sus substrate temperatures will be even more facilita
However, at some intermediate temperature below 10 K
phonon mean free path in substrates like sapphire may g
long so as to exceed the dimensions of the mirror. In t
case a moread hocmodel has to be considered, in which o
specifies the details of the thermal link of the mirror to t
main heat sink. Similar care should be taken if the therm
length at the lowest frequency of interest is of the order
the mirror size. Possibly in both cases the effect would
smaller than predicted in this paper, because the charact
tic times for thermal equilibrium in the mirror volume woul
get even shorter. In any case, so as to quote just one insta
phonon mean free paths and thermal conductivities~and thus
thermal lengths! have strong dependences at low tempe
tures on the level of impurities, so that each experimen
configuration may be a caseper se.

In conclusion our results may be possibly of interest
two respects: first because they let see promising the us
low temperatures both for gravitational-wave interferomet
and for optomechanical devices, second because they ma
of help to study, in actual experimental configurations
SQL conditions, the role of the thermoelastic effects in
spect to choices of substrate materials, working temp
tures, cavity finesses, mirrors losses, beam spot sizes,
laser powers.
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APPENDIX

In this appendix, we calculate the spectral densitySû@v#

@Eq. ~18!# of the spatially averaged displacementû induced
by the thermodynamic noise. We approximate the mirror
an infinite half space (z>0). At the zeroth order in the ther
mal expansion coefficienta, the solutionu(0) of the quasi-
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static stress balance equation~14! is given by a Green’s ten
sor †Eqs. ~8.13! and ~8.18! of @19#‡. The pressureP(r ,t)
applied on the coated surface of the mirror has only a co
ponent along the normal axisz, and we obtain the following
expression for the displacement expansionQ (0)5“•u(0):

Q (0)~r ,t !52
2~11s!~122s!

E
F0 cos~vt !

3E dkxdky

~2p!2
e2k'

2 r
0
2/42k'z1 i (kxx1kyy), ~A1!

with k'5Akx
21ky

2.
To calculate the dissipated energyWdiss it is useful to

analytically extend the pressure-induced expansionQ (0) for
negative values ofz in such a way that it is an even functio
of z. Its spatial Fourier transformQ (0)@k,t# is then equal to

Q (0)@k,t#52
4~11s!~122s!

E
F0 cos~vt !

k'

k2
e2k'

2 r
0
2/4,

~A2!

with k25kx
21ky

21kz
2 .

In the same way, we analytically extend the temperat
perturbationdT in the half spacez<0 in such a way that
dT(1)(r ,t) is an even function ofz. Using the Fourier trans-
form of the thermal conductivity equation~15! and the ex-
pression~A2! of Q (0), we find thatdT(1)@k,t# is equal to

dT(1)@k,t#5A@k#eivt1c.c., ~A3!

where the functionA@k# is given by

A@k#5
2~11s!aT

rC

ivk'

k2~a2k21 iv!
F0e2k'

2 r
0
2/4. ~A4!

We now determine the thermoelastic dissipationWdiss.
The integral overz in Eq. ~13! is limited to the volume of the
mirror ~infinite half spacez>0!. SincedT(1)(r ,t) is an even
function of z, Wdiss can be written as

Wdiss5
k

2T K E d3r ~“dT(1)!2L , ~A5!

where the spatial integration is in the whole space. Using
Bessel-Perseval relation, we can express the dissipated
ergy Wdiss as a function of the temporal average
udT(1)@k,t#u2 which is equal to 2uA@k#u2 @Eq. ~A3!#:

Wdiss5
k

2TE d3k

~2p!3
k2^udT(1)@k,t#u2&

5
k

TE d3k

~2p!3
k2uA@k#u2. ~A6!

Using Eq.~A4!, we finally obtain
3-8
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Wdiss

F0
2

5
4T

rC
a2~11s!2v2I , ~A7!

where the integralI is given by

I 5E d3k

~2p!3

a2k'
2

k2~a4k41v2!
e2k'

2 r 0
2/2. ~A8!
ys

nd

e,

et
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08200
This expression allows to determine the spectral den
Sû@v# of the displacementû from the fluctuation-dissipation
theorem@Eq. ~12!#. One gets the result given in the text b
Eq. ~18!:

Sû@v#532a2~11s!2
kBT2

rC
I . ~A9!
r-
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